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Fractal and Lacunary Stochastic Processes 

B. D. Hughes, ~ E. W. Montroll, 2 and M. F. Shlesinger 2'3 

Discrete-time random walks simulate diffusion if the single-step probability 
density function (jump distribution) generating the walk is sufficiently short- 
ranged. In contrast, walks with long-ranged jump distributions considered in this 
paper simulate L6vy or stable processes. A one-dimensional walk with a self- 
similar jump distribution (the Weierstrass random walk) and its higher- 
dimensional generalizations generate fractal trajectories if certain transience 
criteria are met and lead to simple analogs of deep results on the Hausdorff- 
Besicovitch dimension of stable processes. The Weierstrass random walk is 
lacunary (has gaps in the set of allowed steps) and its characteristic function is 
Weierstrass' non-differentiable function. Other lacunary random walks with 
characteristic functions related to Riemann's zeta function and certain number- 
theoretic functions have very interesting analytic structure. 

KEY WORDS: Random walks; fractals; stable distributions; lacunary se- 
ries. 

1. I N T R O D U C T I O N  

A persistent theme of statistical physics, recurring in a wide variety of 
distinct models, (1) is the insensitivity of the properties of the bulk (i.e., a 

large, or mathemat ica l ly  infinite system) to the precise microstructure of its 
const i tuent  parts. This insensit ivity to microstructure is not  uncondi t ional ,  

and  requires (i) restrictions on  the spatial d imens ion  of the system a nd  (ii) 
certain m o m e n t  condi t ions  upon  statistical distr ibutions a nd  ranges of 

interactive forces. 
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Perhaps the simplest problem of statistical physics in which these 
matters are well documented is the discrete-time random walk, where the 
question of microstructure sensitivity is settled by the central limit theorem 
and its extensions. (2) If p(x) is the single-step probability density function 
("jump distribution") then qualitative behavior insensitive to the precise 
structure of p(x) [embodied in a diffusive, or Gaussian, continuum limit] is 
guaranteed provided that the mean-squared displacement per step 

(x 2) = fx (x) dx (1) 

is finite. When this constraint is violated weakly, i.e., if the integral defining 
(x 2) diverges only mildly, a diffusive continuum limit can still be exhibited, 
but only at the cost of introducing a nonstandard scaling of length and 
time to define the diffusion constant. When the integral diverges suffi- 
ciently strongly, the continuum limit is a L6vy (stable) distribution, (3) the 
order of which depends on the asymptotic behavior ofp(x) as Ix[-~ ~ .  The 
probability density function P(x, t) for the position x at time t of a particle 
whose motion is governed by a stable distribution is most easily character- 
ized in Fourier space. For the symmetric, one-dimensional case 

ff(q,t)=~f~o eiqxp(x,t)dx=exp[-Ctlqi" ] (2) 

where C is a positive constant and the order /~ of the distribution is 
restricted to the interval 0 < ~ < 2. The case ~ = 2 corresponds to the 
Gauss distribution and is the only case for which the mean-squared 
displacement at any instant is finite. 

An example of Gillis and Weiss (4) can be used for illustrative purposes. 
Consider a one-dimensional lattice walk for which the probability p(l) for a 
displacement of l sites at a given step is 

p ( 1 )  - 2~'(1 + a) n__~l ~ t,. + 8,._. ) (3) 

where o~ > 0 and ~ denotes the Riemann zeta function, (5) defined for 
Re(s) > 1 by 

~(s) = 2 n-S (4) 
n=l 

When o~ > 2, the walk has a diffusive continuum limit, while if a < 2 the 
continuum limit is given by the stable distribution (2) of order a. This 
change in the statistical properties of the walk can be traced to a qualitative 
change in the structure function 

~(k)= ~ eiklp(l) (5) 
l~ --0o 
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of the walk as a passes through the value 2. For a > 2, 

1 ~ lZp(l) k 2 as k ~ O  (6) ~ ( k ) -  1 N - - ~  l = - ~  

while if 0 < a < 2 

X(k) - 1 ~  - const.  Ikl  ~ as k - ~ 0  (7) 

Borrowing the terminology of statistical thermodynamics, we have a change 
in the "critical exponent" /~--= limlkl__,o{ln[1- ~(k)]/ln[k[) since /~ = 2 for 
a > 2 and/~ = a for 0 < a < 2 .  

In a given spatial dimension s, all symmetric lattice walks with finite 
mean-squared displacement per step have, in addition to a common Gauss- 
ian limit, qualitatively similar random walk statistics, of which three pre- 
eminent examples are 

(i) R, the probability of eventual return to the origin(6): 

R = I  if s = l o r 2 ;  R < I  if s > 3  

(ii) %, the conditional mean time for any walker who ever returns to 
the origin to make his first return (7)" 

% = c ~  if s < 4 ;  % < ~  if s>~5 

(iii) S,,  the mean number of distinct sites visited in a walk of n 
steps,(8) where n --~ ~ :  

S , ~ / n  if s = l ;  S, ,~:n/lnn if s = 2 ;  Sheen if s~>3 

Each of these random walk statistics exhibits a "critical dimensionality" 
above which the statistic is qualitatively independent of s. If the condition 
of finiteness of (x  2) is relaxed, the critical dimensionalities are shifted. For 
example in the Gillis-Weiss walk in the case a = 1, S~ oc n/Inn, while if 
a < l ,  S n ~ n .  

2. FRACTAL RANDOM WALKS 

It has become apparent in recent years, principally from the work of 
Mandelbrot (9) that fractional exponents, shifts in effective dimensionality 
and microstructure-dependent behavior may be linked to self-similar scal- 
ing and microstructure in space and time. However, this link is not 
transparent for simple discrete-time random walks, such as the example of 
Gillis and Weiss, or for their continuum analogs, the stable processes (Lrvy 
flights). To exhibit the link more clearly, the authors considered in earlier 
papers ( ]0,~ 1) a class of random walks with a self-similar microstructure built 
into the jump distribution. The prototype for this class of walks takes place 
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on the one-dimensional continuum, with jump distribution 

p ( x ) - a 2 a  1 ~ a - " { 8 ( x - A b " ) + 8 ( x + A b " ) }  (8) 
n = 0  

Here a and b are dimensionless and greater than 1, while A is a length scale 
introduced to allow passage to a continuum limit (k ~ 0 and r --> 0 jointly, 
where r is the time between steps, the relative rates of decrease of A and ~- 
being appropriately matched). When b is integral, the walk is confined to a 
lattice of spacing A, and its structure function is 

o~ 

X(k)- a -  1 • a-"cos(b"k) (9) 
a n = 0  

More generally, when b is not restricted to integer values, the characteristic 
function of (8) is 

oo i 
p(q) = f_ e q p(x)dx = X(qA) (10) 

The random walk generated by (8) can be connected to Mandelbrot 's 
fractals in three different ways. In each of these connections, which we now 
describe, the quantity 

I~ = lna/lnb (11) 

acquires a special significance. We focus our attention on the parameter 
range 0 </~ ~< 2 (b 2/> a) where 

(x2)_ a -  1 42 ~ [b2/a] n (12) 
a n = 0  

is infinite. 

2.1. Intuitive Connect ion  

The jump distribution (8) ensures that a step of length Ab" is a_ times 
more likely than the next longest step (Ab n+ 1) and, on the average, about a 
jumps of a given length Ab n will be made for each jump of length Ab n+ i. 
As the walk progresses, the set of sites visited should consist of clusters of 
sites, punctuated by gaps, which are part of a hierarchy of clusters which is 
self-similar in some statistical sense. Since the parameters a and b are 
measures of the number of subclusters in a cluster and the spatial size 
scaling between clusters, the parameter/~ in (11) may be identified as the 
analog of a fractal dimension in the sense of Mandelbrot. (9) However, an 
important restriction must be imposed. As the random walk evolves, two 
outcomes are possible--the walker may visit all sites (persistence) or fail to 
visit some sites (transience). (This dichotomy is strictly true as stated only 
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for lattice walks. For walks on the continuum, one speaks not of visiting a 
point, but rather of visiting an arbitrarily small neighborhood of the point.) 
For the present model, transience is certain when 0 < /z  < 1, and persis- 
tence is certain when /~ >/ 1. In the persistent case, the walker ultimately 
returns to fill in any gaps in the set of sites visited and the clustering 
eventually disappears. 

2,2. Connection via a Continuum Limit 

It can be shown (10,11) that if A and ~" (the characteristic length scale, 
and the time between steps) approach zero jointly, while 

a ~ l + a A  and b ~ l + f i A  (13) 

subject to the constraints that /~ = lna/lnb and A~/~- are held constant, 
then the probability density function P(x, t) for the position x of the walker 
after a time t is given by the one-dimensional symmetric stable distribution 
of order /~ [Eq. (2)]. The random walk thus simulates stable processes, 
which figure prominently in the theory of fractals. Although the walk has 
two parameters a and b we observe that they do not enter individually, but 
only in the form of a fractal dimension lna/lnb. 

2.3. Connection via a Scaling Equation 

The characteristic function for the walk, defined by (8) and (9), obeys 
a scaling equation, since 

)~(k) = a-1)~(bk) + a - 1 cos(k) (14) 

The nonanalytic part ~ksing(k ) of )~(k) satisfies the homogeneous equation 

)ksing(k ) = a-I)ksing(bk ) (15) 

so that' 

),~,.g(k) = Ik["Q(k) (16) 

where Q(k) is a bounded function, periodic in ln[k[ with period lnb of 
quite intricate structure. ( =0,1=~ The parameter tz thus enters as a nonintegral 
critical exponent derived from a scaling equation (so that the random walk 
problem has some similarities to real-space renormalization group transfor- 
mations, which have been explored elsewhere (12~). 

By exploiting simultaneously the intuitive connection to fractals and 
the connection to L6vy's stable processes, we are able to derive simple 
analogs for our random walk of deep theorems on the Hausdorff-  
Besicovitch dimension of stable processes. It may be helpful to the reader 
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to note here that the Hausdorff-Besicovitch dimension D H of a subset ~2 of 
E-dimensional Euclidean space is, for self-similar sets, the fractal dimension 
Mandelbrot ~ 9) introduces by scaling arguments. However, a precise defini- 
tion of D/_ t can be given, ~ 13) which applies to arbitrary sets of points f~, and 
D~/can be shown to satisfy the inequality 

D r ~  D~/< E (17) 

where D T (an integer) is the topological dimension ~ 14) of the set fL Man- 
delbrot calls the set ~ a fractal if D~/> DT-. 

McKean (15) has shown that for a one-dimensional stable process of 
order /~, with x(t,o~) denoting the position after time t in any particular 
realization ~ of the process, 

P (x(t ,o~) = x o for some t > 0} = 0 (18) 

for every real x0, provided that 0 </~ < 1. In other words, a stable process 
of order /~ < 1 skips over any point x 0 almost surely. (Here P denotes 
probability measure over the space of all realizations ~ of the process, and 
an event happens almost surely if it occurs for all realizations ~ except for a 
set of measure zero.) McKean has also shown that the range of x( t ,  o~), i.e., 
the set of points visited, almost surely has Hausdorff-Besicovitch dimen- 
s i o n b t i f 0 < / ~ < l ,  and l i f /~> /  1. 

Our random walk is transient if/~ < 1 and persistent if/~/> 1, so that 
we have an immediate analog of McKean's first theorem. When the walk is 
transient,/~ is the analog of the fractal dimension of the set of sites visited, 
while if the walk is persistent we fill up the entire space available to the 
walker; this is the analog of McKean's second theorem. 

The one-dimensional random walk we have considered is merely a 
prototype for a class of random walk and renewal processes (10,11) which one 
may call fractal stochastic process. We give here another example from this 
class ( 11)--a random walk on a s-dimensional continuum generated by the 
jump distribution 

p(x) = [Aslx[ s-1 ] -'pl(Ixl) (19) 

where As is the surface area of the unit sphere in s-dimensions andp](lx[) is 
the probability density function for the length of any step, given by 

pl(lXl ) _ a -  1 ~ a-n~(lX]_ Ab n) (20) 
a n = 0  

The characteristic function for the distribution (19) can be shown <11> to be 

p(q)  = f e x p ( i q  �9 x)p(x) dSx 

oo 

_ a -  1 E a -nF( �89189  (21) 
a n=0 
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with J~ denoting the usual Bessel function of the first kind of order p. This 
"fractal Rayleigh-Pearson walk" has the same three connections to fractals 
as the simpler one-dimensional example. It is transient when/x < 2, so that 
we have a simple analog of the theorem of Blumenthal and Getoor (16) 
which states that the Hausdorff-Besicovitch dimension of the range of an 
s-dimensional isotropic stable process (s/> 2) of order/z is almost surely/z. 

3. LACUNARY RANDOM WALKS 

The "clustered" random walk in one dimension discussed in the 
preceding section may be called a fractal random walk, in view of its many 
connections to fractals. It may also be described as a laeunary random walk 
[with "lacuna" meaning "hole" or "gap"], since there are gaps in the set of 
possible steps, and the characteristic function can be related to lacunary 
Taylor (17) and Fourier (is) series. If b is an integer, defining z = e ;k we can 
rewrite the definition (9) of the structure function of the walk in the form 

) t ( k ) -  a -  1 Re ~ a-nz bn (22) 
a n=0 

The power series has gaps, or missing terms. For example, if b = 2 we have 

1 + gap of 1 + a - lz2  + gap of 1 + a-2z4 

+gap  of 3 + a-3z s + gap of 7 + a-4z 16 + �9 �9 �9 

The gaps increase in size. It can be shown (17) that for any a > 1 and integer 
b > 1, the power series in (22) converges for [z[ < 1, but it cannot be 
analytically continued beyond the unit circle due to a dense crowding of 
nonanalytic points on the unit circle. Noncontinuability is a characteristic 
property of lacunary power series [provided that the gaps grow sufficiently 
rapidly] exemplified in the remarkable theorem of Fabry ( 19): I f  )tn/n ~ oo 
and the radius of convergence of f ( z ) =  ~a~z  x~ is 1, then f ( z )  cannot be 
continued beyond [z[ = 1. 

The noncontinuability of the series in (22) suggests that the structure 
function )t(k) has extremely complicated behavior as a function of k. In 
fact, for b~ < 1, ~(k) is Weierstrass' example of a function which at no point 
possesses a finite derivative, (2~ and the authors have taken the liberty of 
calling the random walk of which it is the structure function (or characteris- 
tic function) Weierstrass' random walk. (1o) 

It is interesting to consider other random walks for which the structure 
function is a lacunary series. Perhaps the simplest example is the one- 
dimensional lattice walk generated by 

p(x) = (2 (1 + n - l - o  + 8(x  + (23) 
n = l  



280 Hughes et ai. 

where a > 0, fi is real and greater than 1 and f denotes Riemann's zeta 
function [Eq. (4)]. Since 

oo 

 x2}= + 

= ( A = ~ ( a + l - 2 f i ) / ; ( a + l )  if a > , 8  
(24) 

l if a <~ 2fl 

the walk is nondiffusive when a < 2fi; we restrict our attention to this case. 
For fl > 1, the walk is lacunary, while if fi = 1 it is the example of Gillis 
and Weiss. (4) For integral/~ > 1, the structure function of the walk is 

oo 

X(k) = ~(1 + a)- '  ~ n-'-~cos(n~k) (25) 
n = l  

which is both a generalization of Riemann's zeta function and a lacunary 
series. The case f i - - 2  has been analyzed in detail by Hardy, (2~ together 
with the analogous series with the cosine replaced by a sine, in the first 
rigorous investigation of Riemann's celebrated assertion that the function 
~=ln-2sin(n2x) is nondifferentiable. (21) Hardy proved that if fi = 2 and 
a < 3/2, the function X(k) defined by (25) and the analogous sine series do 
not have a finite derivative with respect to k at any point which is an 
irrational multiple of ~. However, at some rational multiples of ~r a finite 
derivative can be shown to exist. 

We call the random walk generated by (23) the Riemann walk. It can 
be shown rigorously by Mellin transform techniques (similar to those used 
in Refs. 10-12) that if 

p =- a/ f i  > 1/2 (26) 

 ikl" 
h(k) - 1~  - 2fi~(1 + a)r(1 + u)sin(�89 (27) 

as k--> 0. If, in addition to the condition that v > 1/2, we restrict fi to the 
interval 0 < fi < 2, the following asymptotic expansion holds: 

( -  1)"~(1  lkl + 2nil) 
2,(k)~l  - 2/~{(1 + a)Y(1 + p)sin(�89 + 2., 

k 2n 

(28) 

The series on the right-hand side is convergent for all k when 0 < B < 1, 
and divergent for all k > 0 when fi > 1. For fi = 1 (the Gillis-Weiss lattice 
walk), the series converges only for Ikl ~< 2~r, but the value of 2~(k) at other 
values of k can be inferred from the periodicity of h(k). Although the 
Riemann walk is fractal, in the sense that its continuum limit is a L6vy 

then 
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distribution, it does not possess the precise self-similar scaling manifested in 
the Weierstrass random walk. 

Other lacunary random walks can be constructed using functions of 
great importance in analytic number  theory. Consider the two lacunary 
lattice walks having structure functions 

)t(k) = C ~ n-acos(nk) (29) 
n = 2  

n pr ime 

and 
oo 

2~(k) = g ~ n-a I I~(n)lcos(nk ) (30) 
n = l  

where C and K are constants chosen to ensure normalization [)t(0) = 1] and 
/~(n) denotes the M6bius function (5) 

i if n = 1 
/z(n) = - 1) k if n is the product  of k distinct primes (31) 

if any prime factor of n is repeated 

Let ~r(x) denote the number  of prime numbers not exceeding x, so that 

7r(n + 1) - ~r(n) = { 01 otherwiseif n is prime ) (32) 

Then in view of the identities (5) 

n-p=p ~(x)x-~-~dx, ~ n-Pl~(n)l= ~(p)/~'(2p) (33) 
n = 2  n = l  

n pr ime 

and the contour integral representation 

c o s ( k ) =  ~-gl Jc-Cc+i~lkl-'rts)c~ ' ~2 / 0 < c = R e ( s ) < l  (34) 

we can show that 

X(k) - 1 = ~ic ~c-i~fc+i~[klv2r(s)c~ +a) f 2 

(35) 
and 

x f f+'~lkl- 'r(s)cos(~)  f(~+ a) )t( k ) - 1 -  
a c - - i ~  . -2 ~'(2s + 2a) ds (36) 

for the prime and M6bius walks, respectively, with the value of c suitably 
restricted. The leading order small k behavior of the right-hand side of (35) 
comes from the singularity of the integrand at s = 1 - a. This singularity is 
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not a simple pole, in view of the prime number theorem (5) which, in its 
weakest form, states that 7 r ( x ) ~ x / l n x  as x ~ oo. It would be of interest if 
(35) could be used as the basis of a new proof of the prime number 
theorem. Equation (36) for the M6bius walk raises more interesting possi- 
bilities. While the dominant behavior comes from the simple pole at 
s = 1 - a, the higher-order behavior is heavily influenced by the zeros of 
~(2s + 2a). It is well known that apart from the trivial zeros at s = - 2 ,  
- 4 , - 6 . . .  the function ~(s) has zeros only in the critical strip 0 < 
Re(s) < 1, and the famous Riemann hypothesis asserts that all the zeros lie 
on the critical line Re(s )=  1/2. It has been stated (22) that the proof or 
disproof of the Riemann hypothesis is "unquestionably the most celebrated 
question in mathematics." Perhaps the connection between it and random 
walks, as exhibited here, might provide some clue to the true nature of the 
difficulties impeding resolution of this problem. Both random walks of Eqs. 
(35) and (36) can be made to converge to the same L6vy flight in the 
continuum limit. It is the rate of convergence that is different and deter- 
mined by the higher-order terms in the structure function. 

Our discussion of lacunary random walks has been largely confined 
here to one-dimensional cases, but generalizations to higher-dimensional 
walks are possible. For example, the characteristic function of the fractal 
Rayleigh-Pearson walk (11) [Eq. (21)] is a kind of lacunary series: since 
~CnJo(nX ) is called a Schl6milch series, it may be described by a lacunary 
generalized Schl6milch series. Although such series are sure to possess 
many beautiful properties analogous to those of lacunary Taylor and 
Fourier series, they appear to have never been studied. 

Although our discussion of fractal and lacunary stochastic processes 
has centered here on discrete time random walks, the basic ideas can be 
extended to other processes, including renewal processes (12) and con- 
tinuous-time random walks. In the latter case, the probability density 
function P(x, t) for the position of the walker at time t then satisfies a linear 
generalized master equation. (24) Such equations can also be derived from 
nonlinear deterministic equations (either through a Carleman linearization 
technique (25) or via a method of Nishigori (26) which gives the memory 
kernel in terms of a continued fraction). The connection between "chaos" 
in nonlinear deterministic systems and spatial or temporal fractal behavior 
in random walk systems will be investigated elsewhere. 
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